
Rec4Ad: A Free Lunch to Mitigate Sample Selection Bias
for Ads CTR Prediction in Taobao

Jingyue Gao, Shuguang Han, Han Zhu, Siran Yang, Yuning Jiang, Jian Xu, Bo Zheng
{jingyue.gjy,shuguang.sh,zhuhan.zh,siran.ysr,mengzhu.jyn,xiyu.xj,bozheng}@alibaba-inc.com

Alibaba Group
Beijing, China

ABSTRACT
Click-Through Rate (CTR) prediction serves as a fundamental com-
ponent in online advertising. A common practice is to train a CTR
model on advertisement (ad) impressions with user feedback. Since
ad impressions are purposely selected by the model itself, their
distribution differs from the inference distribution and thus ex-
hibits sample selection bias (SSB) that affects model performance.
Existing studies on SSB mainly employ sample re-weighting tech-
niques which suffer from high variance and poor model calibration.
Another line of work relies on costly uniform data that is inade-
quate to train industrial models. Thus mitigating SSB in industrial
models with a uniform-data-free framework is worth exploring. For-
tunately, many platforms display mixed results of organic items (i.e.,
recommendations) and sponsored items (i.e., ads) to users, where
impressions of ads and recommendations are selected by different
systems but share the same user decision rationales. Based on the
above characteristics, we propose to leverage recommendations
samples as a free lunch to mitigate SSB for ads CTR model (Rec4Ad).
After elaborating data augmentation, Rec4Ad learns disentangled
representations with alignment and decorrelation modules for en-
hancement. When deployed in Taobao display advertising system,
Rec4Ad achieves substantial gains in key business metrics, with a
lift of up to +6.6% CTR and +2.9% RPM.
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1 INTRODUCTION
For large-scale e-commerce platforms like Taobao, online advertis-
ing contributes a large portion of revenue. As advertisers typically
pay for user clicks on advertisements (ads), a common practice is
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to rank them based on expected Cost Per Mille (eCPM) [31]:

𝑒𝐶𝑃𝑀 = 1000 × 𝑝𝑐𝑡𝑟 × 𝑏𝑖𝑑, (1)

where 𝑝𝑐𝑡𝑟 is the predicted Click-Through Rate (CTR), and 𝑏𝑖𝑑
denotes the price for each click. Hence, CTR prediction serves as a
fundamental component for online advertising systems.
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Figure 1: An illustration of the serving and updating process
for CTR model in a typical online advertising system.

As shown in Fig. 1, a production CTR model scores all candidates
and selects the top few based on Eq. (1) for display. The displayed
ads as well as user feedback (i.e., click/non-click) are then recorded,
with which we continuously train new models. Due to its simplicity
and robustness, such a training paradigm is widely adopted by
many industrial systems [1, 19, 21]. However, since the displayed
ads are not uniformly sampled from all candidates but purposely
selected by the model itself, the training data distribution could be
skewed from the inference distribution. This is widely known as the
sample selection bias (SSB) problem [13, 32]. It violates the classical
assumption of training-inference consistency and may potentially
affect the model performance.

Recent efforts [20, 22, 24, 28, 31] have been devoted to alleviating
SSB in ranking systems. Methods based on Inverse Propensity Scor-
ing [22, 24, 28] recover the underlying distribution by re-weighting
the training samples. Despite theoretical soundness, they require a
propensity model that accurately estimates sample occurrence prob-
ability, which is difficult to learn in dynamic and complicated envi-
ronments. Moreover, sample re-weighting may yield un-calibrated
predictions that are problematic for ads CTR models [30]. Another
line of work collects uniform data via random policy, which helps
train an unbiased imputation model for non-displayed items [31]
or guide the CTR model training via knowledge distillation [20].
However, even small production traffic (e.g., 1%) of the uniform
policy will severely cause degraded user experience and revenue
loss, and the obtained uniform data of this magnitude is insufficient
for training industrial models with billions of parameters. With
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Figure 2: (A) Mixed results of ads (green dashed line) and
recommendations (orange dashed line). (B,C) Causal Graph
of CTR prediction for both ads and recommendations.

these issues, we investigate how to mitigate SSB for industrial CTR
models under a uniform-data-free framework.

Inspired by causal learning [2, 29], CTR prediction can be framed
as the problem of treatment effect estimation. As in Fig. 2(B), sam-
ple features compose unit X, whether to display it acts as a binary
treatment T and click is the outcome Y to estimate. The root cause
of SSB is attributed to existence of confounders ∆ (e.g., item pop-
ularity) in X that affect both T and Y. Recent studies [9, 14] show
that confounders mislead models to capture spurious correlations
between the unit features and the outcome, which are non-causal
and hurt generalization over the inference distribution. Hence, it is
promising to mitigate SSB by disentangling confounders ∆ from
real user-item interest Γ in sample features, which is non-trivial in
absence of randomized controlled trials (i.e., uniform data) [23].

As shown in Fig. 2, many platforms [4, 10] display mixed results
of sponsored items and organic items that are independently se-
lected by advertising and recommendation systems. For clarity, we
refer to sponsored items as ads. We refer to organic items as
recommendations. This scenario has two characteristics:

• Shared decision rationales. With a unified interface de-
sign, users are unaware of whether items are sponsored
or organic, making their click decision determined by real
user-item interest Γ rather than sources of displayed items.

• Different selection mechanisms. Advertising and rec-
ommendation systems serve different business targets (e.g.,
revenue/clicks/dwell time) [10] and have different selection
mechanisms as verified in Sec. 2.2. Thus their SSB-related
confounders are rarely overlapped, making system-specific
confounders ∆ad/∆rec capture a substantial portion of ∆.

The above characteristics make it possible to disentangle ∆ad/∆rec
and Γ by jointly considering samples from two sources. Compared
with the uniform data, recommendation samples are of a compara-
ble or even larger magnitude than ads samples and persist without
revenue loss, making it a free lunch worthy of exploitation. Though

few if any confounders common in two systems could still remain
with Γ, disentangling system-specific ∆ad/∆rec from Γ is already a
meaningful step towards mitigating SSB, especially when uniform
data is unavailable in industrial advertising systems.

To this end, we propose to leverageRecommendation samples to
mitigate SSB For Ads CTR prediction (Rec4Ad). Under this frame-
work, recommendation samples are retrieved and mixed with ad
samples for training. With raw feature embeddings, we elaborately
design the representation disentanglement mechanism to dissect
system-specific confounders and system-invariant user-item in-
terest across two systems. Specifically, this mechanism consists
of an alignment module and a decorrelation module with various
regularizations. Finally we make prediction with disentangled and
enhanced representation. Rec4Ad has been deployed to serve the
main traffic of Taobao display advertising system since July of 2022.

Our contributions are summarized as follows:
• We analyze the existence of SSB in CTR prediction and point
out the potential to leverage recommendation samples to
mitigate such bias in absence of uniform data.

• We propose a novel framework named Rec4Ad, which jointly
considers the recommendation and ads samples in learning
disentangled representations that dissect system-specific
confounders and system-invariant user-item interest.

• We conduct offline and online experiments to validate the
effectiveness of Rec4Ad that achieves substantial gains in
business metrics (up to +6.6% CTR and +2.9% RPM).

2 PRELIMINARY
2.1 Problem Formulation
Input: The input includes a user setU, an ad set A, an item set I,
user-ad impressions Dad, and user-item simpressions Drec

• Each user𝑢 ∈ U is represented by a set of features {𝑢1, ..., 𝑢𝑚}
including user profile features (e.g., age and gender) and his-
torical behaviors (e.g., click and purchase).

• Each ad 𝑎 ∈ A is a promotion campaign for a sponsored
item 𝑖 ∈ I. Besides item-level features like category and
brand, 𝑎 also has campaign-level features including ID and
historical statistics, denoted by {𝑎1, ..., 𝑎𝑛}.

• Each impression in 𝐷𝑎𝑑 is a tuple (𝑢, 𝑎, 𝑐,𝑦) describing when
the advertising system displayed 𝑎 to 𝑢 under context 𝑐 =

{𝑐1, .., 𝑐𝑘 } such as time and device, user clicked it (𝑦 = 1)
or not (𝑦 = 0). As for 𝐷𝑟𝑒𝑐 , the tuple changes to (𝑢, 𝑖, 𝑐,𝑦)
logged by the recommendation engine.

Output:Weaim to learn amodel 𝑓 that predicts the click probability
𝑓 (𝑢, 𝑎, 𝑐) if displaying 𝑎 ∈ A to user 𝑢 ∈ U under context 𝑐 .

2.2 Analysis of Sample Selection Bias
2.2.1 SSB in Ads Impressions. SSB happens when each candidate
does not share equal opportunities for impression. To examine its
existence, we define the metric of impression ratio (IR) to measure
the opportunity of each ad in our system:

IR(𝑎) = #sessions where 𝑎 was displayed
#sessions where 𝑎 was in the candidate set

, (2)

where a session refers to a user request. We first calculate IR for
each ad in𝐷𝑎𝑑 , sort them by IR in descending order, and then divide
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Figure 3: An overall framework of Rec4Ad (best viewed in color).

Figure 4: Left: Average IR for different groups of ads. Right:
Model performance w.r.t different IR group of ads.

Figure 5: Left: ImpressionDistribution in𝐷𝑎𝑑 and𝐷𝑟𝑒𝑐 . Right:
Simulated results under different ranking mechanisms.

them equally into 12 groups. Fig. 4 (Left) shows the average IR for
each group (the red line) compared with the ideal uniform data
(the blue line). We find that impressions on 𝐷𝑎𝑑 are distributed
among different ads in an extremely imbalanced way, where
the IR of the first group is nearly 200 times that of the last group.

2.2.2 Influence of SSB. Since base CTR model is trained on 𝐷𝑎𝑑 ,
we analyze its ranking and calibration performance under the im-
balanced ad impressions. For ranking performance, we use the
metric of AUC, and the calibration performance is measured by
the Expected Calibration Error (ECE) [30]. Details of two metrics
are introduced in Sec. 4.1. Fig. 4 (Right) shows online model perfor-
mance on different groups of ads with descending IR. It is observed

thatmodel tends to perform worse on ads with lower IR than
on those with higher IR. It is consistent with our assumption
that model does not generalize well on ads with few impressions
and validates the necessity to handle SSB for improvement.

2.2.3 Mitigating SSB with Recommendation Samples. As defined
before, each ad in A corresponds to an organic item in I. Thus
we investigate how impressions in 𝐷𝑟𝑒𝑐 are distributed among or-
ganic items with ad counterparts. From Fig. 5 (Left), we find that
though some groups of ads have few impressions in 𝐷𝑎𝑑 ,
their corresponding items contribute an important portion
of impressions in 𝐷𝑟𝑒𝑐 . It is attributed to different selection mech-
anism behind 𝐷𝑎𝑑 and 𝐷𝑟𝑒𝑐 . We conduct a simulated study on 𝐷𝑎𝑑
for verification, which changes the ranking function from 𝑝𝑐𝑡𝑟 ∗𝑏𝑖𝑑
to 𝑝𝑐𝑡𝑟 (commonly adopted in recommendation systems) and re-
displays top-10 ads. Fig. 5 (Right) illustrates IR of each original rank
under two mechanisms. It is clear that impression distribution
is changed, where ads with low rank in original list have op-
portunities to be displayed under another mechanism. Above
empirical analysis show that it is promising to leverage recommen-
dation samples in 𝐷𝑟𝑒𝑐 to mitigate SSB in 𝐷𝑎𝑑 .

3 METHODOLOGY
Fig. 3 shows two stages of Rec4Ad in deployment: data augmen-
tation and disentangled representation learning, which con-
structs and leverages recommendation (rec) samples, respectively.

3.1 Data Augmentation
3.1.1 Retrieving Recommendation Samples. To ensure user experi-
ence, the percentage of ad impressions in all impressions is usually
limited to a low threshold. Typically, we have |𝐷𝑎𝑑 | ≪ |𝐷𝑟𝑒𝑐 |,
making it intractable to consume entire 𝐷𝑟𝑒𝑐 owing to multiplied
training resources. Moreover, not all rec samples are useful for en-
hancing ads model due to difference between A and I. Thus we
retrieve rec samples that are closely related to advertising system.

Let 𝐼 (𝑎) ∈ I denote the item that 𝑎 ∈ A is advertised for. We
define an item set I𝑎𝑑 containing all items with related ads:

I𝑎𝑑 = {𝑖 ∈ I|∃𝑎 ∈ A, 𝐼 (𝑎) = 𝑖}. (3)
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We discard rec samples whose items fail to occur in I𝑎𝑑 , since
they fail to provide complementary impressions that relate to any
ad of interest. In this way, we retrieve a subset of rec samples:

𝐷 ˆ𝑟𝑒𝑐 = {(𝑢, 𝑖, 𝑐,𝑦) ∈ 𝐷𝑟𝑒𝑐 |𝑖 ∈ I𝑎𝑑 }. (4)

3.1.2 Pseudo Sample Mapping. The reasons to map retrieved rec
samples to pseudo ad samples are two-fold. First, it allows rec sam-
ples and ad samples to have uniform input format, which facilitates
efficient feature joining and batch processing. Second, pseudo sam-
ples scattering in the U × A space help learn a CTR prediction
model for ads, compared with theU × I space.

In Fig. 3, we maintain an item-ads index where key is item 𝑖 and
values are their related ads 𝐴(𝑖) = {𝑎 ∈ A|𝐼 (𝑎) = 𝑖}. To select an
ad from 𝐴(𝑖), we do not take their impressions into consideration,
which avoids introducing selection bias in the advertising system.
Instead, we adopt a recent-𝐾-random strategy. We randomly select
an ad𝑎′ frommost recent𝐾 ads related to 𝑖 , where𝐾 is a fixed hyper-
parameter. After mapping, we obtain the set of pseudo samples:

𝐷 ˜𝑟𝑒𝑐 = {(𝑢, 𝑎′, 𝑐, 𝑦) | (𝑢, 𝑖, 𝑐,𝑦) ∈ 𝐷 ˆ𝑟𝑒𝑐 , 𝑎′ ∈ 𝐴(𝑖)}, (5)

3.2 Disentangled Representation Learning
3.2.1 Original Representation. we embed raw features of sample
(𝑢, 𝑎, 𝑐,𝑦) into low-dimensional vectors [𝑒 (𝑢), 𝑒 (𝑎), 𝑒 (𝑐)]. Opera-
tions like attention mechanism [34] are further employed to aggre-
gate embeddings of user behavior sequences. We concatenate these
results together to obtain intermediate representation e.

Batch Normalization (BN) [15] is commonly used in training
of industrial CTR models [25] to stabilize convergence. It calcu-
late statistics over training data for normalization during serving.
However, when incorporating 𝐷 ˜𝑟𝑒𝑐 into training, BN statistics are
calculated based on ad and rec samples but only used to normalize
ad samples during online serving. The distribution discrepancy
between two kinds of samples weakens the effectiveness of BN.

To deal with this problem, we design source-aware BN (SABN),
which adaptively normalize samples according to their sources. Let
𝑠 indicate which kind the sample is, SABN works as follows:

𝑆𝐴𝐵𝑁 (𝑒, 𝑠) = 𝛾𝑠
𝑒 − 𝜇𝑠√︃
𝜎2𝑠 + 𝜖

+ 𝛽𝑠 , 𝑠 ∈ {𝑎𝑑, 𝑟𝑒𝑐}, (6)

where 𝛾𝑠 , 𝛽𝑠 , 𝜇𝑠 , 𝜎2𝑠 are source-specific parameters for normaliza-
tion. Then we feed the normalized representation e′ into MLP
(Multi-Layer Perception) layers for a compact representation x that
captures feature interactions among user, ad, and context. We add
superscripts on representations (e.g., x𝑎𝑑 /x𝑟𝑒𝑐 ) to denote its source.

3.2.2 Alignment. Since users are usually unaware of the difference
between ad and rec impressions, their click decisions can be as-
sumed independent of underlying systems, which are commonly
determined by their interest. To identify user-item interest Γ be-
hind click decision, we propose to extract invariant representations
shared between 𝐷𝑎𝑑 and 𝐷 ˜𝑟𝑒𝑐 . In other words, samples in 𝐷𝑎𝑑 and
𝐷 ˜𝑟𝑒𝑐 should be indistinguishably distributed in the invariant rep-
resentation space. To achieve this goal, we first apply projection
layers over original representations of ad and rec samples:

x𝑠𝑖𝑛𝑣 = 𝑀𝐿𝑃
𝑠
𝑖𝑛𝑣 (x

𝑠 ) ∈ R𝑑 , 𝑠 ∈ {𝑎𝑑, 𝑟𝑒𝑐} (7)

A direct method to align {x𝑎𝑑
𝑖𝑛𝑣

} and {x𝑟𝑒𝑐
𝑖𝑛𝑣

} is minimizing their
Wasserstein or MMD distribution distance [7, 11]. However, these
metrics are computationally inefficient and hard to estimate accu-
rately over mini-batches. Instead, we train a sample discriminator
𝐻 to implicitly align them in an adversary way. Particularly, 𝐻 is a
binary classifier that predicts whether the sample is from 𝐷𝑎𝑑 or
𝐷 ˜𝑟𝑒𝑐 based on x𝑖𝑛𝑣 . Optimized with cross entropy loss, 𝐻 aims to
distinguish two kinds of samples as accurate as possible:

𝑠 = 𝑆𝑖𝑔𝑚𝑜𝑖𝑑 (𝑀𝐿𝑃𝐻 (x𝑠𝑖𝑛𝑣)), 𝑠 ∈ {𝑎𝑑, 𝑟𝑒𝑐},

𝐿𝐴 = −
∑︁
𝐷𝑎𝑑

𝑙𝑜𝑔(𝑠) −
∑︁
𝐷 ˜𝑟𝑒𝑐

𝑙𝑜𝑔(1 − 𝑠) . (8)

While 𝐻 tries to minimize 𝐿𝐴 during training, neural layers gen-
erating invariant representations aim to make {x𝑎𝑑

𝑖𝑛𝑣
} and {x𝑟𝑒𝑐

𝑖𝑛𝑣
}

indistinguishable as much as possible, i.e., maximize 𝐿𝐴 . To train
these two parts simultaneously, we insert a gradient reverse layer
(GRL) [8] between x𝑖𝑛𝑣 and the discriminator. In forward propaga-
tion, GRL acts as an identity transformation. In backward propaga-
tion, it reverses gradients from subsequent layers:

Forward : 𝐺𝑅𝐿(x𝑖𝑛𝑣) = x𝑖𝑛𝑣,

Backward :
𝜕𝐿𝐴

𝜕x𝑖𝑛𝑣
= −𝛼 𝜕𝐿𝐴

𝜕𝐺𝑅𝐿(x𝑖𝑛𝑣)
,

(9)

where 𝛼 controls the scale of reversion. In this way, we tightly align
{x𝑎𝑑
𝑖𝑛𝑣

} and {x𝑟𝑒𝑐
𝑖𝑛𝑣

} in the invariant representation space.

3.2.3 Decorrelation. To separate system-specific confounders from
original representation, we apply another set of projection layers:

x𝑠𝑐𝑜𝑛 = 𝑀𝐿𝑃𝑎𝑑𝑐𝑜𝑛 (x𝑠 ) ∈ R𝑑 , 𝑠 ∈ {𝑎𝑑, 𝑟𝑒𝑐}. (10)

If without explicit constraints, x𝑐𝑜𝑛 could still contain information
shared across systems and prevent us from handling confounders
specific to the ad system. To this end, we propose to add regular-
izations to further disentangle x𝑐𝑜𝑛 and x𝑖𝑛𝑣 .

Borrowing the idea that disentangled representations avoid en-
coding variations of each other [5, 6], we penalize the cross-correlation
between two sets of representations. Specifically, let p𝑖 denote the
in-batch vector of 𝑖-th dimension of x𝑖𝑛𝑣 and q𝑗 denote that of 𝑗-th
dimension of x𝑐𝑜𝑛 , their Pearson correlation can be calculated as:

𝐶𝑜𝑣 (p𝑖 , q𝑗 )) = [p𝑖 − p̄i]⊤ [q𝑗 − q̄j],

Υ(p𝑖 , q𝑗 ) =
𝐶𝑜𝑣 (p𝑖 , q𝑗 )√︁
𝐶𝑜𝑣 (p𝑖 , p𝑖 )

,
(11)

where p̄i and q̄j denote in-batch mean of each dimension. Thus the
objective of the decorrelation module are based on correlations of
every pair of dimension cross x𝑖𝑛𝑣 and x𝑐𝑜𝑛 :

𝐿𝐷 =

𝑑∑︁
𝑖=1

𝑑∑︁
𝑗=1

[Υ(p𝑎𝑑𝑖 , q𝑎𝑑𝑗 )2 + Υ(p𝑟𝑒𝑐𝑖 , q𝑟𝑒𝑐𝑗 )2] . (12)

By optimizing 𝐿𝐷 , x𝑐𝑜𝑛 are encouraged to capture residual in-
formation independent from x𝑖𝑛𝑣 , i.e., system-specific confounders
∆ad/∆rec that are discarded by the alignment module.

3.3 Prediction
We reconstruct final representation based on disentangled represen-
tations to predict CTR. Previous studies show that non-causal asso-
ciations also potentially contribute to prediction accuracy [26, 33],
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motivating us to consider x𝑐𝑜𝑛 in reconstruction instead of directly
ignoring it. For simplicity, we use the concatenation operator:

x𝑠𝑛𝑒𝑤 = x𝑠𝑖𝑛𝑣 ⊕ x𝑠𝑐𝑜𝑛, 𝑠 ∈ {𝑎𝑑, 𝑟𝑒𝑐}. (13)

With x𝑠𝑛𝑒𝑤 , we make predictions for ad samples and pseudo samples
with source-aware layers, where cross entropy loss 𝐿𝐶 is optimized:

𝑦𝑠 = 𝑆𝑖𝑔𝑚𝑜𝑖𝑑 (𝑀𝐿𝑃𝑠
𝑝𝑟𝑒𝑑

(x𝑠𝑛𝑒𝑤)), 𝑠 ∈ {𝑎𝑑, 𝑟𝑒𝑐}

𝐿𝐶 =
∑︁

𝐷𝑎𝑑∪𝐷 ˜𝑟𝑒𝑐

[−𝑦𝑙𝑜𝑔(𝑦𝑠 ) − (1 − 𝑦)𝑙𝑜𝑔(1 − 𝑦𝑠 )] . (14)

Thus the objective function of Rec4Ad consists of the CTR predic-
tion loss, the alignment loss and the decorrelation loss:

𝐿 = 𝐿𝐶 + 𝜆1𝐿𝐴 + 𝜆2𝐿𝐷 . (15)

4 EXPERIMENTS
4.1 Experimental Setup
Taobao Production Dataset.We construct the dataset based on
impression logs in two weeks of 2022/06 from Taobao advertising
system and recommendation system. We use data of the first week
for training, which contains ad and rec impressions collected un-
der regular policy. The data of the next week are ad impressions
collected under random policy of a small traffic following [20, 31],
which is used to evaluate model performance against SSB. The
training dataset contains 1.9 billion ad samples and 0.6 billion rec
samples after retrieval, covering 0.2 billion users. The test dataset
contains 18.9 million ad samples and 10.3 million users.
Baselines. Rec4Ad is compared with following baselines.

• Base. We adopt DIN [34] as the vanilla model which does
not account for SSB.

• DAG. TheData-Augmentation (DAG)method directlymerges
rec samples and ad samples to train the base model.

• IPS [16, 24]. It eliminates SSB by re-weighting samples with
inverse propensity of ad impression.

• IPS-C [3] It adds max-capping to IPS weight so that its
variance can be reduced.

• IV [26]. It employs user behaviors outside current system as
instrumental variables for model debiasing.

Metrics. For ranking ability, we use the standard AUC (Area Un-
der the ROC Curve) metric for evaluation [12, 18]. A higher AUC
indicates better ranking performance. In practice, absolute im-
provement of AUC by 0.001 on the production dataset is con-
sidered significant, which empirically leads to an online lift
of 1% CTR. For calibration, we evaluate models with the ECE [30]
metric. We first equally partition the 𝑝𝑐𝑡𝑟 range [0,1] into𝐾 buckets
𝐵1, ..., 𝐵𝐾 . ECE can be calculated as follows:

ECE =
1
|𝐷 |

𝐾∑︁
𝑘=1

|
|𝐷 |∑︁
𝑖=1

(𝑦𝑖 − 𝑦𝑖 ) 𝟙(𝑦𝑖 ∈ 𝐵𝑘 ) |, (16)

where 𝟙(𝑦𝑖 ∈ 𝐵𝑘 ) equals 1 only if 𝑦𝑖 ∈ 𝐵𝑘 else 0. 𝐾 is set to 100. A
lower ECE here indicates better calibration performance.
Implementation The feature embedding size is 16. We use Adam
optimizer [17] with initial learning rate 0.001. The batch size is
fixed to 6000. In data augmentation, we consider the most recent 3
ads for pseudo sample mapping. The dimensions 𝑑 of x𝑖𝑛𝑣 and x𝑐𝑜𝑛
is 128. The ratio 𝛼 of gradient reverse layer in Eq. (9) is 0.1. 𝜆1 and

𝜆2 for the alignment and the decorrelation loss in Eq. (15) is 0.005
and 0.5. For tests of significance, each experiment is repeated 5
times by random initialization and we report the average as results.

4.2 Experimental Results

Table 1: Performance Comparison of Rec4Ad and baselines.
The symbol * indicates the improvements over baselines are
significant with p-value < 0.01 by t-test. We omit standard
deviations since they are all no more than 2 × 10−4.

Method AUC Impv. ECE Impv.

Base 0.6778 - 0.0007 -
DAG 0.6724 -0.0054 0.0032 -0.0025
IPS 0.6618 -0.0160 0.0023 -0.0016
IPS-C 0.6783 +0.0005 0.0015 -0.0008
IV 0.6790 +0.0012 0.0009 -0.0002

Rec4Ad 0.6805* +0.0027 0.0002 +0.0005

4.2.1 Overall Performance. From Table 1, we find that Rec4Ad
significantly performs better than all baselines. Specifically, it out-
performs Base in terms of AUC by 0.0027 and outperforms the
state-of-the-art IV by 0.0015. This demonstrates the effectiveness
of our proposed framework in handling SSB. By dissecting con-
founders and user-item interest for enhanced representations, it
works well over the inference space. Moreover, Rec4Ad successfully
maintains even slightly better model calibration than Base, which
also verifies its suitability for ads CTR prediction. We also observe
that DAG performs worse than baseline both in AUC and ECE.
The reason is ad samples and rec samples present different feature
distributions and label distributions. Naive data augmentation ac-
tually amplifies the distribution discrepancy between training and
inference. The original IPS yields worst AUC, while IPS-C with
max-capping achieves higher AUC than Base. We attribute this phe-
nomenon to high variance in estimation of propensity score. We
also notice that ECE of IPS and IPS-C are all larger than 10−3, which
verifies that sample re-weighting could change label distribution
and result in calibration issues of ads CTR prediction.

Table 2: Comparison among Rec4Ad and three competitive
baselines on ad groups with different impression ratios.

Group Method AUC Impv. ECE Impv.

𝐺𝑡𝑜𝑝

Base 0.6741 - 0.0002 -
IPS-C 0.6736 -0.0005 0.0004 -0.0002
IV 0.6743 +0.0002 0.0002 0

Rec4Ad 0.6757* +0.0016 0.0002 0

𝐺𝑏𝑜𝑡𝑡𝑜𝑚

Base 0.6625 - 0.0021 -
IPS-C 0.6648 +0.0023 0.0018 +0.0003
IV 0.6734 +0.0009 0.0021 0

Rec4Ad 0.6654* +0.0029 0.0010* +0.0011

4.2.2 Performance on Different Ad Groups. In Section 2.2.2, we
show that SSB leads model to perform badly on ads with low impres-
sion ratios. To validate whether Rec4Ad mitigates such influence,
we compare Rec4Ad and three competitive baselines on specific ad
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groups. We sort ads in descending IR as defined in Eq. (2), where
the top 25% are selected as 𝐺𝑡𝑜𝑝 representing ads with enough
impressions and the bottom 25% are selected as𝐺𝑏𝑜𝑡𝑡𝑜𝑚 containing
ads that are less represented in the training data.

Table 2 shows that Rec4Ad achieves best ranking and calibration
performance on both 𝐺𝑡𝑜𝑝 and 𝐺𝑏𝑜𝑡𝑡𝑜𝑚 . The improvements over
Base are greater on 𝐺𝑏𝑜𝑡𝑡𝑜𝑚 with AUC increased by nearly 0.003
and ECE reduced by 0.001. Thus we conclude that Rec4Ad succeeds
in mitigating SSB and boosts model performance on those long-tail
ads. We also observe an interesting seesaw phenomenon about
IPS-C, which also greatly improves metrics on 𝐺𝑏𝑜𝑡𝑡𝑜𝑚 but yields
worse performance on 𝐺𝑡𝑜𝑝 compared with Base. It is because IPS-
C explicitly imposes higher weights for samples with low-IR ads
and lower weights for those with high-IR ads. By contrast, Rec4Ad
exhibits its superiority that improvements on𝐺𝑏𝑜𝑡𝑡𝑜𝑚 are achieved
without the cost of degraded performance on 𝐺𝑡𝑜𝑝 .

Figure 6: Comparison among Rec4Ad and its variants.

4.2.3 Ablation Study. We analyze the effect of key components in
Rec4Ad by comparing it with variants which remove SABN, the
alignment module, and the decorrelation module, respectively.

Fig. 6 shows that after removing SABN, model calibration expe-
riences an obvious degeneration. The reason is that representations
of Rec and Ad samples are with different distributions, making it
difficult to normalize them with shared BN parameters and leading
to mis-scaled network activations as well as badly-calibrated predic-
tions. Furthermore, we find that AUC even drops under 0.679 after
removing the alignment module, validating that the alignment regu-
larization is critical for co-trainingwith ad and rec samples. It allows
Rec4Ad to extract shared user-item interest behind user clicks and
eliminate system-specific confounders from this part. The decorre-
lation module is also shown effective since the variant without this
component performs worse than the default version. It is because
splitting non-causal correlations alone in enhanced representations
also potentially contributes to accurate predictions [26, 33].

4.2.4 Study on Disentangled Representations. As x𝑖𝑛𝑣 and x𝑐𝑜𝑛 are
expected to capture system-invariant and system-specific factors
respectively, we aim to investigate their distributions over ad and
rec samples. We randomly sample a hybrid batch and visualize
learned representations using t-SNE [27]. As shown in Fig. 7, there
is no significant difference between x𝑖𝑛𝑣 for ad and rec samples,
suggesting the captured invariance. When it comes to x𝑐𝑜𝑛 , we
observe that ad samples and rec samples are mostly separated in
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Figure 7: T-SNE visualization of x𝑖𝑛𝑣 (Left) and x𝑐𝑜𝑛 (Right)
for ad samples (red) and rec samples (blue).
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Figure 8: Training AUC of the adversary sample classifier 𝐻 .

different areas, indicating that this representation extracts system-
specific factors from the training data, which we believe stems from
the difference in their selection mechanisms.

In the alignment module, we employs an adversary sample dis-
criminator 𝐻 to distinguish x𝑎𝑑

𝑖𝑛𝑣
and x𝑟𝑒𝑐

𝑖𝑛𝑣
. Thus the classification

performance can be used as an effective proxy to quantitatively
evaluate the goodness of x𝑖𝑛𝑣 . Fig. 8 illustrates the adversary AUC
during training. We observe that it increases at the early stage due
to optimization of𝐻 . Then AUC gradually decreases as the training
goes on, indicating Rec4Ad tries to generate representations that
confuse 𝐻 . Near the end of training, AUC converges to 0.5, which
means ad and rec samples are indistinguishable on x𝑖𝑛𝑣 .

4.3 Online Study

Table 3: Key business metrics of online A/B Test.

Scene Overall Long-Tail
CTR RPM CTR RPM

Homepage +6.6% +2.9% +12.6% +9.3%
Post-Purchase +3.0% +2.6% +3.6% +0.8%

We conduct online A/B Test between Rec4Ad and production
baseline from July 1 to July 7 of 2022, each with 5% randomly-
assigned traffic. Two key business metrics are used in evaluation:
Click-Through Rate (CTR) and Revenue Per Mille (RPM), which
corresponds to user experience and platform revenue, respectively.
As shown in Table 3, Rec4Ad achieves substantial gains in two
largest scenes of Taobao display advertising business, Homepage
and Post-Purchase, demonstrating considerable business value of
Rec4Ad. For long-tail ads with few impressions. Rec4Ad achieves
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up to 12.6% and 3.6% lift of CTR in two scenes, which are larger
than the overall lift. Above results verify that Rec4Ad effectively
mitigates SSB and brings solid online improvements. It has been
successfully deployed in production environment to serve the main
traffic of Taobao display advertising system since July of 2022.

5 CONCLUSION
In this paper, we propose a novel framework which leverages
Recommendation samples to help mitigate sample selection bias
For Ads CTR prediction (Rec4Ad). Recommendation samples are
first retrieved and mapped to pseudo samples. Ad samples and
pseudo samples are jointly considered in learning disentangled
representations that dissect system-specific confounders brought
by selection mechanisms and system-invariant user-item interest.
Alignment and decorrelation modules are included in above ar-
chitecture. When deployed in Taobao display advertising system,
Rec4Ad achieves substantial gains in key business metrics, with a
lift of up to +6.6% CTR and +2.9% RPM.
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