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ABSTRACT
Cascading architecture has been widely adopted in large-scale ad-
vertising systems to balance efficiency and effectiveness. In this
architecture, the pre-ranking model is expected to be a lightweight
approximation of the ranking model, which handles more candi-
dates with strict latency requirements. Due to the gap in model
capacity, the pre-ranking and ranking models usually generate
inconsistent ranked results, thus hurting the overall system effec-
tiveness. The paradigm of score alignment is proposed to regularize
their raw scores to be consistent. However, it suffers from inevitable
alignment errors and error amplification by bids when applied in
online advertising. To this end, we introduce a consistency-oriented
pre-ranking framework for online advertising, which employs a
chunk-based sampling module and a plug-and-play rank alignment
module to explicitly optimize consistency of ECPM-ranked results.
A Δ𝑁𝐷𝐶𝐺-based weighting mechanism is adopted to better distin-
guish the importance of inter-chunk samples in optimization. Both
online and offline experiments have validated the superiority of our
framework. When deployed in Taobao display advertising system,
it achieves an improvement of up to +12.3% CTR and +5.6% RPM.
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1 INTRODUCTION
Online advertising has become a major source of revenue for many
web platforms [4, 15]. Advertisers ensure effective promotion of
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Figure 1: An illustration of the typical three-phase cascading
architecture for online advertising systems.

products by bidding and paying for user actions (e.g., click and pur-
chase)1 on advertisements (i.e., ads). To maximize platform revenue,
the advertising system typically ranks ads based on their Expected
Cost Per Mille (ECPM) [25] and selects top ones for impression:

𝐸𝐶𝑃𝑀 = 1000 × 𝑏𝑖𝑑 × 𝑝𝐶𝑇𝑅, (1)

where 𝑏𝑖𝑑 is the price that the advertiser is willing to pay and 𝑝𝐶𝑇𝑅
is the predicted click-through rate (CTR) denoting the probability
that the user clicks the ad.

Under strict latency requirements in online deployment, it is in-
feasible for complex CTR models [5, 12, 18, 26] with high inference
cost to handle millions of candidates in the ad corpus. To balance
efficiency and effectiveness, a common practice in industrial sys-
tems is to adopt a cascading architecture [3, 10, 19, 23], which filters
ads through multiple phases with increasingly complex models as
illustrated in Fig. 1. Particularly, the retrieval model first retrieves
tens of thousands of relevant ads from the corpus. Afterwards, the
pre-ranking model outputs pCTR for retrieved candidates, where
top hundreds with highest ECPM are sent to the ranking model for
final selection. To handle a larger candidate set, the pre-ranking
model is usually designed to be lightweight, which works more
efficiently but less accurately compared with the ranking model.

Pre-Ranking has recently received increasing attention due to its
importance in the cascading architecture. Huang et al. [8] propose a
two-tower model that maps users and candidates into latent vectors
and calculates their inner products. To enable high-order feature
interactions, Li et al. [10] add find-grained interactions between
two towers andWang et al. [23] propose to use deep neural network
with squeeze-and-excitation block. Despite improvement of accu-
racy, there is still a non-negligible gap between the pre-ranking and
ranking models. They may generate significantly different ranked

1Without loss of generality, we regard click as the action in this paper
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results on the same candidate set. Such inconsistency hinders the
overall system effectiveness. For example, top ads selected from the
pre-ranking phase could be less competitive in the ranking phase,
causing waste of the computational resource. Also, ads which are
preferred in the ranking phase could be unfortunately discarded in
the pre-ranking phase, leading to sub-optimal results.

Some pioneering studies [19, 20] propose to align the pre-ranking
and rankingmodels via distillation on pCTR scores. The pre-ranking
model is encouraged to generate same scores as the rankingmodel [19]
or generate high scores for top candidates selected by the rank-
ing model [20]. Although exhibiting encouraging performance, the
paradigm of score alignment suffers from the following issues,
especially when applied to the advertising system:

• Inevitable alignment errors. Due to simpler architecture
and fewer parameters for efficiency concerns, the capacity of
the pre-ranking model is limited, making it difficult to well
approximate original scores of the complex ranking model.
Thus even with explicit optimization, there still exist errors
in aligning their scores to be exactly the same.

• Error amplification in ECPM ranks2. In both pre-ranking
and ranking phases, ads are ranked according to their ECPM
as Eq. (1), which is jointly determined by the pCTR score
and the bid. Thus the influence of alignment errors could be
amplified due to existence of bids. As shown in Table 1, when
multiplied by corresponding bids, even a tiny difference in
pCTR scores of the pre-ranking and ranking models leads to
completely different ranked results.

Table 1: A toy example of error amplification in ECPM ranks.
Though pCTR scores of two phases are similar, their ranked
results after considering bids are different.

Candidates Pre-Ranking Ranking
bid pCTR ECPM rank bid pCTR ECPM rank

A 21 0.1 2.1 2 21 0.11 2.31 1
B 11 0.2 2.2 1 11 0.19 2.09 2

Above issues call for rethinking the necessity of strictly aligning
pCTR scores in the advertising system. Essentially, given a set
of candidates, it is not their absolute pCTR scores but their
relative ECPM ranks that determine the results of each phase.
Therefore, to achieve consistent results, the pre-ranking model is
not required to output same pCTR scores as the ranking model.
Instead, it only needs to output scores which yield same ECPM
ranks when multiplied by bids. In this way, the requirement of
score alignment can be relaxed to that of rank alignment, which
is more easier to meet. Moreover, when optimizing pCTR scores
for consistent ECPM ranks, the influence of bids can be taken into
account beforehand, thus alleviating the issue of error amplification.

To this end, we introduce a Consistency-Oriented Pre-Ranking
(COPR) framework for online advertising, which explicitly opti-
mize the pre-ranking model towards consistency with the ranking
model. Particularly, we collect historical logs of the ranking phase,
where each log records a ECPM-ranked list of candidates. COPR
segments the list into fixed-sized chunks. Each chunk is endowed
2We use ECPM rank to denote the order of an ad in the ECPM-ranked list.

with certain level of priority from the view of the ranking phase.
With pairs of ads sampled from different chunks, COPR learns an
plug-and-play rank alignment module which aims to consistently
distinguish their priority using scores at the pre-ranking phase.
Moreover, we adopts a Δ𝑁𝐷𝐶𝐺-based weighting mechanism to
better distinguish the importance of inter-chunk pairs in optimiza-
tion.

Our main contributions can be summarized as follows:

• To the best of our knowledge, we are the first to explicitly
optimize the pre-ranking model towards consistency with
the ranking model in the widely-used cascading architecture
for online advertising.

• We propose a novel consistency-oriented pre-ranking frame-
work named COPR, which employs a chunk-based sampling
module and a plug-and-play rank alignment module for ef-
fective improvement of consistency.

• We conduct extensive experiments on public and industrial
datasets. Both offline and online results validate that the
proposed COPR framework significantly outperforms state-
of-the-art baselines. When deployed in Taobao display ad-
vertising system, it achieves an improvement of up to +12.3%
CTR and +5.6% RPM.

2 RELATEDWORK
In this section, we briefly review studies about pre-ranking.

Located in the middle of the cascading architecture, the pre-
ranking system has played an indispensable role for many large-
scale industrial systems [16, 23]. The development of a pre-ranking
model is mainly for balancing the system effectiveness and effi-
ciency, as the downstream ranking model usually cannot deal with
tens of thousands of candidates. To this end, techniques such as
the dual-tower modeling [8, 24] are commonly adopted. However,
this paradigm limits feature interactions between users and items
to the form of vector product, which often results in extensive
performance degradation.

Another line of work strives to enhance high-order feature in-
teractions, and explores the ways to reduce the online latency. Li et
al. [10] add fine-grained and early feature interactions between two
towers. Wang et al. [23] propose to use fully-connected layers and
employ various techniques from the perspectives of both modeling
efficiency and engineering optimization. Specifically, a Squeeze-
and-Excitation module [7] is utilized to choose the most useful
feature set, and meanwhile system parallelism and low-precision
computation are exploited whenever possible for latency optimiza-
tion. Ma et al. [16] propose a feature selection algorithm based
on feature complexity and variational dropout (FSCD) to search
a set of effective and efficient features for pre-ranking. A similar
study [11] uses network architecture searching (NAS) to determine
the optimal set of features and corresponding architectures. These
studies mainly focus on improving the accuracy of the pre-ranking
model but neglects its interaction with the subsequent ranking
model, leading to inconsistent ranked results.

Several studies propose to align the pre-ranking and ranking
models in terms of pCTR scores via knowledge distillation. RD [20]
encourages the lightweight student model to score higher for can-
didates selected by the larger teacher model, which is often used
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Figure 2: The framework of consistency-oriented pre-ranking.

in training pre-ranking models. RankFlow [19] regularizes the pre-
ranking and ranking models to generate same scores for same candi-
dates. Despite encouraging performance, there still exist inevitable
errors in score alignment due to discrepancy in model capacity.
When applied in online advertising, influence of such errors would
be amplified by bids of ads, yielding inconsistent ECPM-ranked
results. In this paper, we propose to relax the objective of score
alignment to rank alignment, where bids of ads are incorporated
and consistency of ranked results between two phases can be ex-
plicitly optimized in an effective manner.

3 METHODOLOGY
In this section, we first introduce background knowledge about the
pre-ranking model, and then describe our proposed COPR frame-
work as illustrated in Fig. 2.

3.1 Background
Training Data. When the advertising system serves online traffic
as Fig. 1, hundreds of ads are ranked through the ranking phase
and recorded to logs, which we refer to as ranking logs. Each log
contains an ranked list of ads with descending ECPM:

R = [(𝑎𝑑1, 𝑝𝐶𝑇𝑅1, 𝑏𝑖𝑑1), ..., (𝑎𝑑𝑀 , 𝑝𝐶𝑇𝑅𝑀 , 𝑏𝑖𝑑𝑀 )], (2)

where 𝑝𝐶𝑇𝑅𝑖 is the score output by the ranking model for 𝑖-th ad
and 𝑏𝑖𝑑𝑖 denotes its bid.𝑀 is the number of candidates. Then top
𝑁 ads are displayed to the user. User feedback 𝑦 (click/non-click)
on each displayed ad is recorded to impression logs:

I = [(𝑎𝑑1, 𝑦1), ..., (𝑎𝑑𝑁 , 𝑦𝑁 )] . (3)

Base Model. The base model for pre-ranking is usually a light-
weight CTR model. Here we adopt the architecture of COLD [23].
The input features consist of three parts: user features U such as age
and gender, ad features A such as brand and category, context fea-
tures C such as time and device. After pre-selecting a concise set of
features, COLD feeds them into embedding layers and concatenate
their embeddings for a compact representation x:

x = 𝐸 (U) ⊕ 𝐸 (A) ⊕ 𝐸 (C) . (4)

Then it employs a prediction net consists ofmultiple fully-connected
layers to estimate CTR:

𝑦 = 𝑆𝑖𝑔𝑚𝑜𝑖𝑑 (𝑀𝐿𝑃 (x)) ∈ [0, 1] . (5)

To accurately predict user click 𝑦, the model is optimized with
cross entropy loss over impression logs 𝐼 :

𝐿𝑐𝑡𝑟 =
∑︁
I
[−𝑦𝑙𝑜𝑔(𝑦) − (1 − 𝑦)𝑙𝑜𝑔(1 − 𝑦)] . (6)

3.2 Consistency-Oriented Pre-Ranking
Though the pre-ranking model is expected to well approximates the
ranking model in the cascading system, their gap in model capacity
often hinders satisfying approximation. Thus in addition to 𝐿𝑐𝑡𝑟 , we
aim to explicitly optimize the pre-ranking model towards consistent
results with the ranking model over R.
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Figure 3: Illustration of chunk-based sampling.

3.2.1 Chunk-Based Sampling. Given candidates {𝐴𝑑𝑖 }𝑀1 in ranking
logs, an ideal pre-ranking model should output scores that yield
same ECPM-ranked list as Eq. (2). Considering its limited capacity,
it could be hard to rank hundreds of ad all in correct positions.
To reduce the learning difficulty, we partition the ranked list into
𝐷 = 𝑀

𝐾
fixed-sized chunks, each constituting 𝐾 adjacent ads, as

shown in Fig. 3. We regard ads in the same chunk as candidates
with same priority in the ranking phase. The pre-ranking model is
not required to distinguish ads in the same chunk. Instead, it only
needs to consistently rank candidates in the granularity of chunk.
For each chunk, we randomly sample a candidate and endow it
with the priority related to this chunk. In this way, for each ranked
list, we obtain a concise sub-list:

R𝑐ℎ𝑢𝑛𝑘 = [(𝑎𝑑𝑠𝑑 , 𝑝𝐶𝑇𝑅𝑠𝑑 , 𝑏𝑖𝑑𝑠𝑑 , 𝐷 − 𝑑)]𝐷
𝑑=1, (7)

where 𝑠𝑑 is the index of sampled ad in chunk 𝑑 and 𝐷 − 𝑑 denotes
its priority which the larger the better.

The above chunk-based sampling has two-fold advantages: 1)
It provides a flexible way to control the granularity of consis-
tency, which makes the objective reachable for the lightweight
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pre-ranking model. By increasing the chunk size 𝐾 , the objective
of consistency gradually shifts from fine-grained to coarse-grained.
2) It effectively reduces the size of ranked list in logs by 𝐾 times
and still maintains coverage of original lists, which is critical for
efficient training in industrial machine learning systems. In our
production implementation, 𝐾 is set to 10.

3.2.2 Rank Alignment. In the following, we introduce how to mod-
ify the base model with a plug-and-play rank alignment module.

Instead of regularizing the difference between 𝑦𝑖 in Eq. (5) and
𝑝𝐶𝑇𝑅𝑖 in Eq. (7) as score alignment methods [19, 20], we propose to
relax the objective to rank alignment on a properly-adjusted pCTR
score. Particularly, we employ a relaxation net to learn a factor
𝛼 > 0, with which we adjust the original pCTR score:

𝛼 = 𝑅𝑒𝐿𝑈 (𝑀𝐿𝑃 (𝑥)) + 1𝑒−6 ∈ R+,

𝑦 = 𝛼 ∗ 𝑦,
(8)

where 𝑦 denote the adjusted pCTR. Thus ECPM at the pre-ranking
phase can be accordingly estimated as 𝑦 ∗ 𝑏𝑖𝑑 , based on which we
aim to correctly rank each inter-chunk pair in R𝑐ℎ𝑢𝑛𝑘 . Here we
adopt the pairwise logistic loss for its relatively good performance
and the simplicity for implementation [1, 17]:

𝐿𝑟𝑎𝑛𝑘 =
∑︁
𝑖< 𝑗

𝑙𝑜𝑔[1 + 𝑒
−( �̃�𝑠𝑖 ∗𝑏𝑖𝑑𝑠𝑖

�̃�𝑠 𝑗 ∗𝑏𝑖𝑑𝑠𝑗
−1)

] . (9)

For each pair of 𝑎𝑑𝑠𝑖 and 𝑎𝑑𝑠 𝑗 sampled from different chunks that
𝑖 < 𝑗 , we optimize 𝐿𝑟𝑎𝑛𝑘 by encouraging 𝑦𝑠𝑖 ∗ 𝑏𝑖𝑑𝑠𝑖 > 𝑦𝑠 𝑗 ∗ 𝑏𝑖𝑑𝑠 𝑗 ,
which means 𝑎𝑑𝑠𝑖 would be ranked before 𝑎𝑑𝑠 𝑗 by ECPM in the pre-
ranking phase. If all inter-chunk pairs can be correctly ranked, we
achieve consistent ECPM-ranked results between the pre-ranking
and ranking phases over 𝑅𝑐ℎ𝑢𝑛𝑘 .

Note that by introducing the relaxation factor 𝛼 , we slightly
modify the original pCTR score to achieve consistent ranked results
if necessary. To maintain original value as much as possible, 𝛼
should be around 1. Thus we add a symmetric regularization to
penalize the deviation of 𝛼 from 1:

𝐿𝑟𝑒𝑔 =

{
𝛼 − 1 𝛼 > 1
1
𝛼 − 1 𝛼 <= 1

. (10)

It is worth mentioning that the proposed rank alignment module
does not rely on specific assumption about the architecture of base
model. It is an plug-and-play component that can be added to any
pre-ranking models for improvement of consistency.

3.2.3 Δ𝑁𝐷𝐶𝐺-Based Pair Weighting. 𝐿𝑟𝑎𝑛𝑘 in Eq. (9) fails to con-
sider the relative importance of different pairs in consistency opti-
mization. In practice, consistently ranking ads from chunk 1 and
chunk 10 is more important than ranking chunk 11 and chunk 20,
since only the top ads will be sent to the ranking phase and dis-
played to users. It calls for a weighting mechanism that considers
chunk-related priorities of candidates.

Intuitively, if pair (𝑎𝑑𝑠𝑖 , 𝑎𝑑𝑠 𝑗 ) in 𝐿𝑟𝑎𝑛𝑘 are mistakenly ranked,
the consistency between the pre-ranking and ranking phase will be
hurt. Thus its weight in 𝐿𝑟𝑎𝑛𝑘 should be determined by the negative
impact. As each sampled 𝑎𝑑𝑠𝑑 in R𝑐ℎ𝑢𝑛𝑘 is endowed with priority
𝐷 −𝑑 , we use NDCG [2, 9] to measure the utility of any ranked list

𝑝 of these candidates:

𝐷𝐶𝐺 =

𝐷∑︁
𝑖=1

2𝑝𝑖 − 1
𝑙𝑜𝑔(𝑖 + 1) ,

𝐼𝐷𝐶𝐺 =

𝐷∑︁
𝑖=1

2𝐷−𝑖 − 1
𝑙𝑜𝑔(𝑖 + 1) ,

(11)

where 𝑝𝑖 denote the priority of 𝑖-th ad in the permutation and the
IDCG is the ideal DCG achieved by R𝑐ℎ𝑢𝑛𝑘 . If we swap the position
of 𝑎𝑑𝑠𝑖 and 𝑎𝑑𝑠 𝑗 in R𝑐ℎ𝑢𝑛𝑘 , the utility of the list will experience a
drop which can be further normalized as:

Δ𝑁𝐷𝐶𝐺 (𝑖, 𝑗) = 2𝐷−𝑖 − 2𝐷− 𝑗

𝐼𝐷𝐶𝐺
[ 1
𝑙𝑜𝑔(𝑖 + 1) −

1
𝑙𝑜𝑔( 𝑗 + 1) ] . (12)

The utility drop is used to re-weight inter-chunk pairs in consis-
tency optimization:

𝐿𝑟𝑎𝑛𝑘 =
∑︁
𝑖< 𝑗

Δ𝑁𝐷𝐶𝐺 (𝑖, 𝑗)𝑙𝑜𝑔[1 + 𝑒−(�̃�𝑠𝑖 ∗𝑏𝑖𝑑𝑠𝑖 −�̃�𝑠𝑗 ∗𝑏𝑖𝑑𝑠𝑗 ) ] . (13)

Thus the objective function of COPR can be formulated as:

𝐿 = 𝐿𝑐𝑡𝑟︸︷︷︸
𝐶𝑇𝑅 𝐿𝑜𝑠𝑠

+ 𝜆1𝐿𝑟𝑎𝑛𝑘 + 𝜆2𝐿𝑟𝑒𝑔︸               ︷︷               ︸
𝐶𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦 𝐿𝑜𝑠𝑠

, (14)

where 𝜆1 > 0, 𝜆2 > 0 are weights for corresponding loss terms.
By minimizing 𝐿, we explicitly optimize the pre-ranking model
towards consistency with the ranking model via a plug-and-play
rank alignment module.

3.3 System Deployment
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Figure 4: Overview of system pipeline.

We introduce the deployment of COPR in three stages: data
generation, model training, and online serving as shown in Fig. 4.
Data Generation. During online serving, hundreds of ads are
ranked through ranking model and recorded to ranking logs, with
which we perform chunk-based sampling. The content of each
sample includes user index, ad index, chunk index as well as the
bid. Note that the bid at the ranking phase could differ from that
at the the pre-ranking phase [22]. In this case, we record the pre-
ranking bid since it influences 𝐿𝑟𝑎𝑛𝑘 in model training. When ads
are displayed to users in the client, we also record user feedback in
impression logs, which are used in calculating 𝐿𝑐𝑡𝑟 .
Model Training. The training procedure is performed on our
ODL (Online Deep Learning) [14] platform, which consumes real-
time streaming data to continuously update model parameters.
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After training with fixed number of steps, the learnt model will be
delivered to the Model Center, which manages all online models.
Online Serving.Once a new version of pre-ranking model is ready,
pre-ranking server will load it from Model Center to replace the
online version in service.

4 EXPERIMENTS
In this section, we conduct experiments on both public dataset
and production dataset to validate the effectiveness of COPR in
improving consistency and overall system performance.

4.1 Experiment Setup
Taobao Dataset. It is a public dataset3 with 26 million impression
logs of 1 million users and 0.8 million items in 8 days. Item price is
used as bid. Impressions of first 7 days are used to train DIN [26] as
the ranking model. For each impression, we sample 10 candidates
and collect ECPM-ranked results by the ranking model to train
pre-ranking models. Logs of the last day are used for evaluation.
To simulate the cascading process, we sample 100 candidates for
each impression, among which the pre-ranking and ranking model
sequentially select top 10 and top 1 candidates to display.
Production Dataset. It contain 8 days of impression logs and
ranking logs collected from our system shown in Fig. 4. These logs
are of the magnitude of billions. The first week of logs are used for
training and the last day is used for evaluation. According to the
scenario that logs come from, it is further divided into two subsets:
Homepage and Post-Purchase.
Baselines. COPR is compared with following baselines:

• Base adopts the architecture of COLD [23] and is trained on
impression logs.

• Distillation [6] directly distills predicted scores of the rank-
ing model on impression logs.

• RankFlow [19] distills predicted scores of the rankingmodel
on ranking logs and further regularizes the pre-ranking
model to generate high scores for candidates selected by
the ranking model.

• COPR w/o Δ𝑁𝐷𝐶𝐺 removes the Δ𝑁𝐷𝐶𝐺-based weighting
mechanism from the COPR framework.

Metrics. We adopt two groups of metrics in evaluation.
• The first group measures the consistency between ECPM-
ranked results of the pre-ranking and ranking phases, includ-
ing HitRatio(HR@K), normalized discounted cumulative
gain (NDCG@K), and mean average precision (MAP@K).
In HR@K and MAP@K, top 10 candidates selected by the
ranking model are treated as relative ones. In NDCG@K,
order in ranking logs is used as a proxy of relevance. The
standard calculation of these metrics can be found in [13].

• The second group measures the overall system performance.
We use Click-Through-Rate (CTR) and Revenue Per Mille
(RPM) similar to [19, 21], which corresponds to user experi-
ence and platform revenue, respectively. On public dataset,
CTR is simulated as the portion of clicked ads in displayed
ads, and RPM is simulated as the product of CTR and average
bid of clicked ads. In production experiment, we perform
online A/B test to obtain CTR and RPM on real traffic.

3https://tianchi.aliyun.com/dataset/dataDetail?dataId=56

Hyper-parameters. The chunk size is set to 2 and 10 on the public
dataset and the production dataset, respectively. The number of
MLP layers in the prediction net and the relaxation net is 3. The
embedding size of raw input features is set to 16. 𝜆1 and 𝜆2 in
Eq. (14) are fixed to 1 and 0.2.

4.2 Results on Public Dataset

Table 2: Comparison among COPR and baselines int terms
of consistency and overall system performance. Best results
are highlighted in bold.

Method HR@10 NDCG@10 MAP@10 CTR RPM

Base 0.544 0.402 0.198 0.0170 112.66
Distillation 0.593 0.461 0.244 0.0176 117.36
RankFlow 0.722 0.467 0.270 0.0182 121.36

COPR w/o Δ𝑁𝐷𝐶𝐺 0.741 0.514 0.327 0.0188 129.20
COPR 0.759 0.530 0.359 0.0191 132.93

Table 2 compares COPR and baselines in terms of consistency and
system performance. We only show 𝐾 = 10 in HR@K, NDCG@K,
and MAP@K due to limited space. Results under other settings of
𝐾 are similar. From Table 2, we draw the following conclusions.

First, system performance (CTR and RPM) is highly associated
with the consistency between the pre-ranking and ranking phases.
For COPR and baselines, the higher consistency generally yields the
better system performance. It validates our motivation to explicitly
optimize consistency between phases in order to improve the overall
effectiveness of the cascading system.

Second, COPR achieves best consistent results of all methods,
outperforming the state-of-the-art RankFlow by 5.1%, 13.5%, and
33.0% in terms of HR@10, NDCG@10, and MAP@10. We attribute
the improvement to our shift of objective from score alignment to
rank alignment. By such relaxation, COPR can directly optimize
towards consistent ECPM-ranked results and meanwhile reduce
the learning difficulty for the lightweight model. Moreover, the
influence of bids is considered in training COPR, thus alleviating
the issue of error amplification that RankFlow suffers from. We
also find that RankFlow is better than Distillation. We think it is
because Rankflow aligns scores over ranking logs while the latter
is on impression logs which is too sparse.

Third, COPR w/o Δ𝑁𝐷𝐶𝐺 experiences performance drop com-
pared with COPR. This ablation study verifies the effectiveness of
the pair weighting mechanism based on Δ𝑁𝐷𝐶𝐺 . By emphasizing
more on important inter-chunk pairs in consistency optimization,
COPR ensures top candidates are more likely to be consistently
ranked, which helps improve the overall utility of pre-ranking re-
sults.

4.3 Results on Production Dataset
We also perform similar evaluation on the production dataset com-
posed of samples from two scenarios. Most conclusions are consis-
tent with those on the public dataset.

As shown in more details from Fig. 5 to Fig. 7, COPR signifi-
cantly outperforms other methods in term of HR@K, NDCG@K,
and MAP@K with varying 𝐾 from 5 to 100 on two scenarios, which
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Figure 5: HR@K of different methods in the scenario of
Homepage (Left) and Post-Purchase (Right).
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Figure 6: NDCG@K of different methods in the scenario of
Homepage (Left) and Post-Purchase (Right).
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Figure 7: MAP@K of different methods in the scenario of
Homepage (Left) and Post-Purchase (Right).

demonstrates the stable improvement of consistency achieved by
our proposed framework. Moreover, we still observe the gap be-
tween COPR and COPRw/o Δ𝑁𝐷𝐶𝐺 , which shows that the weight-
ing mechanism also works in the large-scale production dataset.

To evaluate system performance in production environment, we
perform online A/B test on two scenarios, where these methods
are used to serve real users and advertisers. From Table 3 we find
that Distillation, RankFlow, and COPR all perform better than the
production baseline, among which COPR achieves the largest im-
provement, with a lift of up to +12.3% CTR and +5.6% RPM. With
impressive performance, COPR has been successfully deployed
to serve themain traffic of Taobao display advertising system
in the pre-ranking phase since October of 2022.

4.4 Qualitative Analysis
Given ranked results from the pre-ranking and ranking phases, we
calculate the average pre-ranking position for candidates at each

Table 3: Relative improvement over the production baseline
in online A/B Test. Best results are highlighted in bold.

Method Homepage Post-Purchase
CTR RPM CTR RPM

Base - - - -
Distillation +2.2% +0.1% +3.6% +0.6%
RankFlow +8.3% +2.9% +6.8% +2.3%

COPR w/o Δ𝑁𝐷𝐶𝐺 +11.5% +5.0% +9.6% +3.7%
COPR +12.3% +5.6% +10.8% +4.4%

ranking position, based on which we draw the Ranking-PreRanking
Curve (RPC). The ideal RPC happens when results are exactly same.

4.4.1 Error Amplification in ECPM Rank. As shown in Fig. 8 (Left),
RPC by pCTR of RankFlow is close to the ideal curve, showing
well alignment of raw pCTR in two phases. However, after ranking
by ECPM, RPC of RankFlow largely deviates from the ideal one.
It verifies that the involvement of bid in ECPM will amplify the
influence of errors in score alignment, leading to more inconsistent
ECPM-ranked results. This analysis is consistent with the example
in Table 1. Hence we confirm that merely score alignment is not
enough for the cascading architecture in online advertising.

4.4.2 More Consistent ECPM Rank. Fig. 8 (Right) shows RPC by
ECPM of different methods. We observe that compared with Base
and RankFlow, RPC of COPR is more close to the ideal curve in
almost each ranking position. It qualitatively shows that ECPM-
ranked results given by COPR are more consistent with results
of the ranking phase. It can be attributed to the design of our
consistency-oriented framework, where the rank alignment module
directly optimizes towards this objective. The incorporation of bid
also helps alleviate the above mentioned error amplification.
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Figure 8: Left: RPC by pCTR and ECPM of RankFlow. Right:
RPC by ECPM of different methods.

5 CONCLUSION
In this paper, we introduce a consistency-oriented pre-ranking
framework for online advertising, which employs a chunk-based
sampling module and a plug-and-play rank alignment module to
explicitly optimize consistency of ECPM-ranked results. AΔ𝑁𝐷𝐶𝐺-
based weightingmechanism is also adopted to better distinguish the
importance of inter-chunk samples in optimization. Both online and
offline experiments have validated the superiority of our framework.
When deployed in Taobao display advertising system, it achieves
an improvement of up to +12.3% CTR and +5.6% RPM.
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